Tight-binding model for adatoms on graphene: Analytical density of states, spectral function, and induced magnetic moment
نویسندگان
چکیده
In the limit of low adatom concentration, we obtain exact analytic expressions for the local and total density of states (LDOS, TDOS) for a tight-binding model of adatoms on graphene. The model is not limited to nearest-neighbor hopping but can include hopping between carbon atoms at any separation. We also find an analytical expression for the spectral function A(k,E) of an electron of Bloch vector k and energy E on the graphene lattice, to first order in the adatom concentration. We treat the electron-electron interaction by including a Hubbard term on the adatom, which we solve within a mean-field approximation. For finite Hubbard U , we find the spin-polarized LDOS, TDOS, and spectral function self-consistently. For any choice of parameters of the tight-binding model within mean-field theory, we find a critical value of U above which a moment develops on the adatom. Preliminary calculations also indicate that this moment can be switched on and off by varying the Fermi energy. For most choices of parameters, we find a substantial charge transfer from the adatom to the graphene host.
منابع مشابه
Tight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملCalculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملClustering and magnetic anisotropy of Fe adatoms on graphene
Single Fe adatoms and clusters of Fe adatoms on graphene are studied through first-principles calculations using density functional theory (DFT) and spin density functional theory (sDFT). First, we consider computational cells containing various numbers of C atoms and one Fe adatom. We calculate the binding energy, adatom height, and magnetic moment of the adatom above a few high-symmetry posit...
متن کاملAdsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies
We employ density-functional plane-wave ab initio and tight-binding methods to study the adsorption and migration of carbon adatoms on single-walled carbon nanotubes. We show that the adatom adsorption and migration energies strongly depend on the nanotube diameter and chirality, which makes the model of the carbon adatom on a flat graphene sheet inappropriate. Calculated migration energies for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014